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The stability and time-dependent deflexions of a thin flexible cylinder with zero 
bending rigidity set in a viscous stream are examined. The cylinder is fixed at  one 
end and free at  the other. Modal shapes are found based on solutions to linearized 
equations resulting from small deflexion assumptions; the dependence of cylinder 
motion upon the aerodynamic, elastic and physical size characteristics of the 
cylinder is exhibited. It is found that the cylinder motion is always unstable 
and that cylinder amplitude increases without bound as time is increased. 

1. Introduction 
In  a previous study, Paidoussis (1966a, b)  numerically analyzed the dynamic 

motion of a thin flexible finite-length cylinder fixed at  one end and free at  the 
other end and immersed in a viscous fluid stream. The time-dependent instability 
of the cylinder was shown to be dependent upon the elastic, aerodynamic and 
physical size properties of the cylinder for cases in which the bending stiffness 
(El) was bounded away from zero. The quantity E is Young’s modulus and I 
is the cylinder cross-section moment of inertia. Cylinder motions were assumed 
small, thus permitting linearization assumptions in the governing differential 
equations. For the special case of zero EI or, equivalently, an infinitely flexible 
cylinder, special function solutions for the time-dependent cylinder motion may 
be found under the assumptions of small cylinder deflexions and vibration fre- 
quency. This case provides a good approximation to the dynamic motion of 
very thin, long wires whose bending rigidity is small (owing to the small cross- 
sectional moment of inertia which varies as the wire diameter to the fourth 
power). Previously, the similar problem of the flapping flag given by Lamb 
(1932, p. 374) (which is also a zero bending rigidity plane surface) has been 
analyzed; the present analysis extends such work to cylinder dynamic motions 
and presents results on cylinder stability and displacement in terms of special 
function solutions. 

Initially the equations governing cylinder motion in a viscous fluid stream are 
briefly reviewed. Subsequently, the equation for the zero bending rigidity case 
is obtained as a special case of the general equation. Finally, solutions for modal 
shapes and deflexion amplitudes of the zero bending rigidity cylinder are given as 
functions of cylinder aerodynamic and mechanical properties. 
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2. Equations of motion of a wire suspended in a fluid stream 
Following Paidoussis (1966a, b)  and Gregory & Paidoussis (1966) the equations 

governing the motion of a flexible wire fixed at  one end, free at  the other end and 
immersed in a uniform stream are 

aT -+FL = 0, ax 

where T = T ( x , t )  is the local value of the tension induced by aerodynamic 
shear and pressure forces, Q is the shear force normal to the wire axis, M is the 
lateral virtual mass of fluid per unit length of wire accelerated by the accelerat- 
ing wire, m is the mass of the wire per unit length, and U is the velocity of the 
free stream. Equations (1) and (2) represent the longitudinal and normal force 

FIGURE 1. Force balance on an element of wire. 

balance equations acting on an element of wire (figure 1). It is to be noted that 
(1) and (2) have been linearized with respect to small angular wire deflexions. 
The terms FL and FN represent aerodynamic contributions representing the 
lateral shear force and normal pressure forces per unit length respectively; 
iiT is the bending moment and Q = - a a / a x  - EI a3y/ax3. The quantity y is 
the vertical displacement, x is distance along the unperturbed wire axis and t 
is time. The origin x = y = 0 of the wire is located at the fixed end. Note that, 
when aerodynamic and shear forces are absent, (1) and (2) reduce to the wave 
equation for a string with constant tension. Further assumptions regarding the 
derivation of (1) and (2) are listed in Paidoussis ( 1 9 6 6 ~ ~ ) .  

Drag data for roughened cylinders have been summarized by Taylor (1952) 
for Reynolds number (R) flows characteristic of turbulent flow conditions. 
Briefly, for roughened cylinders 

2 M  
7 lD  
2 M  
? l D  

FN = - - U2{CDp sin2i + C’sin i), 

FL = -- U2Cfc0si, 
(3) 
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where CDp and C, are the drag coe%oients due to pressure and shear forces acting 
on the wire surface. The fluid density p was eliminated by p = 4M/nD2, where D 
is the wire diameter. The FN and FL expressions given in (3) are essentially pro- 
positions inwhich theCDpand C, values are empirically selected from experimental 
data taken from turbulent-boundary-layer-induced forces on inclined roughened 
cylinders. The roughness pattern is one of a large number of projections normal 
to the cylinder. The angle i is given by 

where the quantity v is the velocity component in the y direction. For small wire 
motions, i is small? so that (3) becomes, for turbulent boundary-layer flow 
over roughened wall oylinders, 

1 M  1 M  
2 0  (4) 

where C, = (4/n) CDp and C, = (4/77) C, and terms of the order of i2 have been 
neglected. From (1) axld (4) the wire tension is, for a roughened wall wire (of total 
length L), 1 M  

2 D  T ( x )  = - - U2CT(L - x ) .  

Combining ( l ) ,  ( 2 ) ,  ( 4 )  and ( 5 ) ,  the governing equation of motion for a roughened 
surface wire is 

a4Y a2y a2Y a2y a C, M 
EI + ( M  + m) -- + M U 2 -  + 2M 77 - - - [- (-) Uz(L - x )  31 ax at2 8x2 atax ax 2 D ax 

M 
+‘C N D  -U (2 -+U- 2) = O .  ( 6 )  

3. Special case of the zero bending rigidity wire 
From (6) the special case of the zero bending rigidity (or an infinitely flexible) 

cylinder is obtained by setting EI = 0. The governing equation for the amplitude 
of the roughened surface cylinder under the influence of turbulent-boundary- 
layer-induced forces is 

(7) 
With the non-dimensionalization 

7 = ( t / O U ,  p = M / ( M + m ) ,  
6 = x/L, 6 = LID, = y / L ,  

the above equation becomes 

t The motion of a fluid element, following its passage in time along the wire surface, 
is such that only small deviations from a horizontal path are permitted in accordance with 
linearization assumptions. 
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while the boundary and initial conditions become 
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(9% 6 ,  c, 4 1 7 = 0;  
171 is finite; 
87/87 = 0 ;  

7 = ~ ~ ( 6 ) ;  

5 = 0 (fixed end condition); 
6 = 1 (bounded free-end deflexion); 
T = 0 (zero initial velocity); 
T = 0 (prescribed initial deflexion). 

With the further notation 

a = P(1-tCTE) = / 3 ( 1 - b ) ,  c = &(CT+CN)eP = b + d ,  
b = *PCTE, d = ~ C N ~ P P ,  

and the change of independent variable a + i5t = p, (8) becomes 

Letting 7 = eiwTv(p) and then with the independent variable change x2 = p, 
(10) finally becomes Bessel’s equation 

4w 

with the general solution for non-integer indices 

where 

or, in terms of the original variables, assuming non-integer indices, 

where A and B are constants to be determined from boundary and initial con- 
ditions. The quantity J , ( z )  is the Bessel function of the first kind of index v 
and argument x .  

Consistent with the thin cylinder assumption is the fact that E 9 1 (for purposes 
of this discussion, e+oo). Without loss of generality, it is assumed that the pro- 
duct $ is bounded; then the above may be approximated? by 

-f The condition of 6 $ 4 w / C ~  is also implied in the neglect of the complex term in the 
imaginary part of the complex index. The condition of o small implies that the first few 
eigensolutions contribute most to the modal shape. The a posteriori confirmation of this 
may be seen in figures 2-4, where wire amplitudes (formed from the sum of lo2 eigen- 
solutions) are composed of lower modes. Physically, the a prior; assumption of w small 
is meaningful in that instability is usually manifested in lower-modal shapes first and then 
progresses to higher-modal shapes. The assumption of small w is also consistent with vjU 
small so that the small wire deflexion theory ($2)  holds. 
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Assume? next that C,/C, = Q; further, as IwI is to be finite at  6 = 1, application 
of L’Hbspital’s rule to the previous equation for E+ - a/b E 1 as e+ co leads to 

v(5) N (a  -t b6)-aBJi [ &- 2w2 ( -F-6)4b-&(w-id)4 1 (0 < 6 < 1). (15) 

The condition of v(0) = 0 then requires that 

2 w i (  - a/b)4 b-*(w, - id)% = S,, 

where 8, are the zeros of the Bessel function in (15). The positive zeros are given 
by Sn = nn (n = 0,1 ,2 ,  ...). 
The w, is then given by$ 

Therefore, assuming zero initial velocity of the cylinder at T = 0, 

The remaining initial condition necessary to fix B, is the prescribed initial de- 
flexion 7 = rl(5, T = 0). To this end, assume rl(6) may be expanded as 

W 

rl(+) = X Qz,J+(Un+), 
n= 1 

where u, are the successive positive roots of J+(u) = 0 and SZ, are coefficients 
independent of 4. Then, as 

and 

where up, rq are any two roots of J&u) = 0,  then the expression for rl($) may 
be expanded in an orthonormal set. Let 

t For the large-scale surface roughness patterns discussed by Taylor (1952) (figure 2 
of Taylor in particular specifies a roughness pattern for which (3) is valid), cases for which 
CN/CT < 1 are feasible. Based on results from Taylor, the physically realizable range for 
CN/CT is on the order of 3 2 CN/CT 2 2,  where CN/CT 2: 2 holds for smooth cylinders and 
CN/cT N 4 for very rough cylinders. For small w d  roughness, Paidoussis (1966a, b )  
used CN/CT = 1. From a mathematical point of view, a bounded solution may be obtained 
(for 6 $ 1) for CN/CT > 6 ;  the limit for which rough cylinder theory applies is then 
probably on the order of + < C N ~ C T  = 1. 

$ The negative sign is selected from this point forward so that oo = 0 corresponds to 
7 = 0. 
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where h > 0, y 2 i, and 0 6 lhl 6 1, where h is a scale factor in the expression 
for the initial displacement. Then it follows that as u, = Zwib-&(w,-id)* 
then 4 = [ - (a/b) - g]*, where 0 6 4 6 1. Then 

In the last integral, let [ - (u/b) - (14 = t so that the above integral becomes 

( - l).S1 J+[ f 2 w i  b-*(w, - id)* t ]  t2Y+l  
0 

Suppose that h = 1 ,  y = 8, then it follows that (Luke 1962, p. 51) 

where 

and 

Finally, using (18) and (19) the deflexion becomes 

Note that for increasing 7 the amplitude is always increasing for large E case 
(large LID) as w, is always complex; the wire is unstable for such cases. This 
is in qualitative agreement with results of Paidoussis, who showed that large 
u = (M/E l )*UL leads to instability. Also, the planar problem of the flapping flag 
treated by Lamb (1945) is analogous in that the amplitude of motion continually 
increases for increasing time as in the present problem of cylinder motion. 

4. Discussion of results 
Some sample calculations obtained from (20) are shown in figures 2-4. The 

first result, shown in figure 2,  is the cylinder deflexion for r = p = 10-3 
and E = 20. Although the assumption of 8 9 1 necessary in the derivation of ( 7 )  
may not be fully met by 6 = 20, nevertheless the condition of c $ 4w/CT is 
met (aposteriori) owing to the low modal shape resulting from the first lo2 eigen- 
solutions in (20). 
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Figure 2 indicates a low modal shape characteristic of low E shapes. A nodal 
point appears at ci[ N 0.75. Typical maximum amplitudes are on the order of 
7 N 7h x for non-dimensional times on the order of T = 10-2. 

+3 r 

0 0.5 1.0 
t, axial distance 

FIGURE 2. Wire displacement vs. axial distance for T = p = e = 20 for EI = 0. 

- 36 
0 0.2 0.4 0.6 0.8 1 .o 

6, axial distance 

FIGURE 3. Wire displacement vs. axial distance for T = 10-2,p = E = lo6 for EI = 0. 

Figure 3 illustrates cylinder amplitude for p = E = lo5 and T = 10-2; 
figure 4 illustrates cylinder amplitude for similar conditions except that p = 2.17 
x 10-8. Comparison of figures 3 and 4 indicates that decreasing p (for fixed 8) 

results in increasing cylinder amplitudes for the same T value. For example, 
decreasing /3 from to 2.17 x lov8 results in a scale change of 100 in amplitude. 
Additionally, a decrease in /3 results in an apparent shape change from one con- 
taining many modal points (figure 3) to one of many higher harmonics super- 
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imposed upon a lower harmonic with a single nodal point (figure 4). Similarly, 
an increase in e for fixed r and p results in basically more complex modal shapes 
as may be seen by comparison of figure 2 with figure 3. Effects of e changes (for 
fixed ,!3 and T) are also shown in figure 4. A decreasein e from lo6 to E = 4.28 x 103 

0 

-5 

I I I I I I I I I I 
0.2 0.4 0.6 0.8 1 .o 

6, axial distance 

FIGURE 4. Wire displacement ws. axial distance for p = 2.17 x lo-* for various 7 and B 
values and for EI = 0. (a )  T = 1, e = 4.28 x lo3; ( b )  7 = E = 4.28 x lo3;  
(c)  7 = 10-2, E = 105; (d )  T = 1, e = 105. 

(figures 3, 4) is seen to result in a lessening of maximum cylinder amplitude by 
approximately a factor of 2 for fixedp; adecrease in 6 from lo5 to 20 (figures2,3) 
results in a decrease in maximum cylinder amplitude of approximately a factor of 
100. Effects of increasing T are to increase amplitude without bound for all cases 
studied. It may be concluded that cylinder motion is always unstable with in- 
creasing T. The problem of the flapping flag treated by Lamb (1945) is analogous 
in that for the planar problem the amplitude of motion continually increased for 
increasing time (or 7) as in the present problem. Although the zero bending 
rigidity cases are characterized by instability, the short time cylinder shapes 
are dependent strongly on parameters used to characterize the physical and 
mechanical properties of the cylinder. For the long timeamplitudes and deflexions 
(which may be characterized by large deflexions and as such fall outside of the 
range of applicability of linearized small deflexion theory), non-linear theory 
must be employed to answer questions as to whether or not the amplitude is 
bounded. 
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